Problem 8QUEENS: 8 Queens

In chess it is possible to place eight queens on the board so that no one queen can be taken by any other. Write a program that will determine all such possible arrangements for eight queens given the initial position of one of the queens.
Do not attempt to write a program which evaluates every possible 8 configuration of 8 queens placed on the board. This would require 8^{8} evaluations and would bring the system to its knees. There will be a reasonable run time constraint placed on your program.

Input

The first line of the input contains the number of datasets, and it's followed by a blank line. Each dataset will be two numbers separated by a blank. The numbers represent the square on which one of the eight queens must be positioned. A valid square will be represented; it will not be necessary to validate the input.
To standardize our notation, assume that the upper left-most corner of the board is position (1,1). Rows run horizontally and the top row is row 1 . Columns are vertical and column 1 is the left-most column. Any reference to a square is by row then column; thus square $(4,6)$ means row 4 , column 6 .
Each dataset is separated by a blank line.

Output

Output for each dataset will consist of a one-line-per-solution representation.
Each solution will consist of 8 numbers. Each of the 8 numbers will be the ROW coordinate for that solution. The column coordinate will be indicated by the order in which the 8 numbers are printed. That is, the first number represents the ROW in which the queen is positioned in column 1 ; the second number represents the ROW in which the queen is positioned in column 2 , and so on.
The sample input below produces 4 solutions. The full 8×8 representation of each solution is shown below.

		I	UT	IO		1				SOL	UT	IO		2				I	UT	IO		3		SOLUTION							
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0		0	0	1	0	0	0	

Submit only the one-line, 8 digit representation of each solution as described earlier. Solution \#1 below indicates that there is a queen at Row 1, Column 1; Row 5, Column 2; Row 8, Column 3; Row 6, Column 4; Row 3,Column 5; ... Row 4, Column 8.
Print the solutions in lexicographical order.
Print a blank line between datasets.

Sample Input 1

1
11

Sample Output 1

$\begin{array}{llllllll}1 & 5 & 8 & 6 & 3 & 7 & 2 & 4\end{array}$
$\begin{array}{llllllll}1 & 6 & 8 & 3 & 7 & 4 & 2 & 5\end{array}$
174468253
$\begin{array}{llllllll}1 & 7 & 5 & 8 & 2 & 4 & 6 & 3\end{array}$

