Problem BLOQUES: Bloques

Little Joan has N blocks, all of them of different sizes. He is playing to build cities in the beach. A city is just a collection of buildings.
A single block over the sand can be considered as a building. Then he can construct higher buildings by putting a block above any other block. At most one block can be put immediately above any other block. However he can stack several blocks together to construct a building. However, it's not allowed to put bigger blocks on top of smaller ones, since the stack of blocks may fall. A block can be specified by a natural number that represents its size. It doesn't matter the order among buildings. That is:

13
24
is the same configuration as:
31
42
Your problem is to compute the number of possible different cities with M buildings using N blocks. We say that \#(N, M) gives the number of different cities of size M with N blocks. If $N=3$ and $M=2$, for instance, there are only three possible cities:

```
City #1:
1
2 3
```

In this city the blocks of size 1 is over the block 2 . Block 2 and 3 are over the sand.

```
City #2:
1
32
```

In this city the blocks of size 1 is over the block 3. Block 2 and 3 are over the sand.

```
City #3:
2
31
```

In this city the blocks of size 2 is over the block 3. Block 1 and 3 are over the sand.

Input

The input contains several test cases. Each test case is given in one line, containing N and $M(0<M \leq N \leq 25)$. Input is ended with $N=0$ and $M=0$.

Output

For every testcase a line with the number of possible cities C. You may safely assume that C is less than 2^{63}.

Sample Input 1

32
42
00

Sample Output 1

3
7

