Problem ALGEBRATEAM: Algebraic Teamwork

The great pioneers of group theory and linear algebra want to cooperate and join their theories. In group theory, permutations - also known as bijective functions - play an important role. For a finite set A, a function $\sigma: A \rightarrow A$ is called a permutation of A if and only if there is some function $\rho: A \rightarrow A$ with

$$
\sigma(\rho(a))=a \text { and } \rho(\sigma(a))=a \quad \text { for all } a \in A
$$

The other half of the new team - the experts on linear algebra - deal a lot with idempotent functions. They appear as projections when computing shadows in 3D games or as closure operators like the transitive closure, just to name a few examples. A function $p: A \rightarrow A$ is called idempotent if and only if

$$
p(p(a))=p(a) \quad \text { for all } a \in A
$$

To continue with their joined research, they need your help. The team is interested in non-idempotent permutations of a given finite set A. As a first step, they discovered that the result only depends on the set's size. For a concrete size $1 \leq n \leq 10^{5}$, they want you to compute the number of permutations on a set of cardinality n that are not idempotent.

Input

The input starts with the number $t \leq 100$ of test cases. Then t lines follow, each containing the set's size $1 \leq n \leq 10^{5}$.

Output

Output one line for every test case containing the number modulo $1000000007=\left(10^{9}+7\right)$ of non-idempotent permutations on a set of cardinality n.

Sample Input 1

3

1
2

Sample Output 1

0
1
6425
2171

